

Genetic determinism of boar taint and relationship with meat traits.

Claire DUGUÉ – Oieras – February 2018

Funded by the Horizon 2020 Framework Programme of the European Union

UMR 1388

Introduction

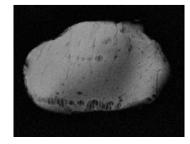
The purpose of this study is :

- To evaluate the feasibility of a selection to decrease the androstenone level in back fat
- To evaluate the feasibility of an indirect selection on androstenone level by decreasing the level of estradiol in the blood, criteria highly correlated to androstenone level and easier to measure
- To evaluate the consequences that these selections could have on meat production and quality traits in purebred or crossbred pigs.

Material and method

- Population : Pietrain (P) and Pietrain Large White (X) pigs with same Pietrain boars.
- Raised in the same farm in case of 12 by genetic type
- Measured traits :

Growth traits	Carcass composition	
Average daily gainFeed conversion ratioAverage daily feed intake	Carcass yieldLean percentage	
Hormones	Skin lesions	
EstradiolTestosterone	 At fattening stage entrance Before slaughtering On carcass 	



Material and method

Meat quality	Computerized tomography (CT) measures
 pH in Ld and ham Drip loss Intramuscular fat Back fat androstenone level 	 Loin eye area Loin eye density Femur density Ham muscle/ bone length ratio

- The number of measured animals varied from 712 P and 736 X for growth traits down to 553 P and 556 X for CT measurements.
- Genetic parameters were estimated with the VCE6 software.

Results : Heritability of Estradiol level and Androstenone back fat concentration

Trait	h² in P pigs	h² in X pigs
Androstenone	0.57	0.71
Estradiol	0.23	0.17

- Back fat androstenone level and plasma estradiol level are highly correlated traits (rg=0.89 in purebred and rg=0.8 in crossbred)
- We evaluated the correlated effects on the meat production traits of :
 - ➤ a direct selection to reduce androstenone
 - > an indirect selection by decreasing the level of estradiol.

Results : Effects of selection to decrease androstenone in purebred pigs.

High correlation: ≥ 0.8 Moderate correlation: around 0.6 Low correlation: around 0.4

Favorable effects on purebred pigs :

- Moderate increase of ham muscle/bone length ratio,
- Low decrease of feed conversion ratio,
- Low increase of **pH in ham**.

Unfavorable effect on purebred pigs :

• High decrease of **testosterone** concentration.

Results : Effects of selection to decrease androstenone in purebred pigs.

Favorable effects on crossbred pigs :

High correlation: ≥ 0.8 Moderate correlation: around 0.6 Low correlation: around 0.4

- High decrease of skin lesion number at fattening stage entrance,
- Moderate decrease of feed conversion ratio,
- Moderate increase of carcass yield,
- Moderate increase of loin eye area,
- Low decrease of **drip loss**,
- Low decrease of average daily feed intake,
- Low increase of **lean percentage**,
- Low increase of ham muscle/bone length ratio.

Unfavorable effect on crossbred pigs :

• Low decrease of femur density.

Results : Effects of selection to decrease estradiol in purebred pigs.

High correlation: ≥ 0.8 Moderate correlation: around 0.6 Low correlation: around 0.4

Favorable effects on purebred pigs :

- High decrease of androstenone concentration,
- Moderate decrease of feed conversion ratio,
- Low decrease of average daily feed intake.

Unfavorable effect on purebred pigs :

• High decrease of **testosterone** concentration.

Results : Effects of selection to decrease estradiol in purebred pigs.

High correlation: ≥ 0.8 Moderate correlation: around 0.6 Low correlation: around 0.4

Favorable effects on crossbred pigs :

- High decrease of **androstenone** concentration,
- High decrease of **skin lesion number at fattening stage entrance**.

Unfavorable effect on crossbred pigs :

• High decrease of **testosterone** concentration.

Conclusion

- A selection to decrease the androstenone level is feasible and would have overall positive effects on meat production and quality traits, and behaviour related traits.
- A selection to reduce the estradiol level would reduce the androstenone level and the only undesirable effect would be to decrease testosterone level.
- This selection is technically easier (blood test) opposed to measuring androstenone level (post mortem or biopsy) and has less unfavorable effects on production traits; it might be preferred.

UMR 1388

Further studies

- We should now standardize estradiol measurement to increase heritability:
 - Measure closer to slaughter
 - Measure at fixed age
- We should also evaluate the effects of these selections on reproductive traits.

Thank you for your attention

The authors acknowledge support from the COST action CA12215 IPEMA

